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ABSTRACT 
 

Valuation techniques used in mining include technical analysis techniques and 
discounted cash flow (DCF) techniques.  There is considerable disagreement as to 
the best method to handle risk and uncertainty, leading to an array of valuation 
methods.  One of the major disadvantages of traditional valuation methods is the 
inability to value management flexibility in the event of improved knowledge resolving 
uncertainty.  Real options analysis is one way of valuing flexibility. 
 
Real options may be analysed using exact formulae, numerical approximation, or 
Monte Carlo simulation.  Numerical approximation using a binomial analysis 
technique offers the flexibility to handle complex real options found in mining 
valuation. 
 
Early options analysis was performed on the basis of an underlying commodity price 
exhibiting an exponential growth.  Models are available, however, to base analyses 
on a price that reverts to some mean value over time. 
 
An example of a complex compound option involving decisions on grade control, 
abandonment, mothballing and expansion was developed by Winsen, 1994.  This 
model has been further enhanced and forms the basis for the analysis in this paper. 
 
The Winsen model did not address valuation of a mine with limited mining reserves, 
or the consideration of the impact of the cut-off grade on mine value.  Both of these 
cases are considered in this paper.  The algorithm developed to value these cases 
incorporates path dependence, linear programming, and three-staged iterative 
dynamic programming.  Further work is suggested to turn these concepts into a 
practical valuation tool. 
 

INTRODUCTION 

The uses for financial valuation of mines 
 

A common aspect of mining management decision making is the need to place a 
value on mining related activities.  These decisions may be categorised as (Park and 
Herath, 2000), (Lawrence, 2001): 

  Equipment and process selection. 

  Equipment replacement. 

  New mine investment and production expansion. 

  Cost reduction. 

  Service improvement. 

  In support of capital raising or in defence of mergers and takeovers as 
required under Australian corporations law as part of an independent expert 
report. 

  Revaluation of existing assets for inclusion in current cost accounting balance 
sheets as determined by the International Accounting Standards Board using 
the new International Valuation Standards Guidance Note for the extractive 
industries formulated in 2003 (Heffernan,2004). 
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Traditional approaches to the valuation of mines 
 

Two approaches are common: the technical analysis techniques; and discounted 
cash flow methods (Lawrence, 2001).Technical analysis techniques include: 

  Yardstick methods where a rule of thumb such as price/earnings ratio or 
price/resource or production unit is used a basis for valuation. 

  Joint venture (JV) terms method that takes into account existing JV 
agreements for the same or similar tenements. 

  Comparability of sales method, otherwise known as real estate based 
valuation. 

  Multiples of exploration expenditure where relevant and effective exploration 
expenditure is multiplied by a prospectivity factor of between 0 and 5. 

  Geoscience rating method utilising a points based scoring system based on 
the prospectivity of the resource.  Value is assigned based on the total point 
score. 

 
Discounted cash flow (DCF) techniques require the estimation of the net present 
value (NPV) of the future stream of cash flows.  These cash flows are discounted at 
an appropriate rate.  There is considerable disagreement on the treatment of risk and 
the selection of the discount rate.  Some alternative approaches include: 

  Selection of a risk adjusted discount rate using the capital asset pricing model 
(CAPM) and the weighted average cost of capital (WACC) to estimate the 
impacts of gearing (Ballard, 1994).  An aspect that seems to be ignored is the 
increased risk to equity when gearing is employed. 

  Recognition of the shortfalls of the CAPM but use it in the absence of a better 
technology (O’Connor and McMahon, 1994).  They prefer to give a range of 
values for different discount rates to show sensitivity to risk. 

  Uncertainties in mineral valuation are too project specific to be assessed 
using the CAPM (Runge, 1994).  Runge suggests varying the discount rate 
based on project specific criteria such as mine life, ‘fit’ with current operations, 
flexibility, and risk criteria. 

  Presentation of discrete sensitivities is a better alternative to Monte-Carlo 
simulation due to the impracticality of this technique (Butler, 1994).  In 
particular, Butler prefers the use of Bayesian statistical techniques to 
determine a downside value from a banker’s perspective. 

  NPV is only one input to value and strategic interests should not be ignored 
(O’Connor and McMahon, 1994).  Adjustments should be made to the NPV 
for market premium, hedging, reserves, start-up capital, controlling interest, 
risk (geographic, political, currency), and synergy with other assets. 

  Managerial flexibility should be incorporated into valuation analysis since 
management does not blindly follow a fixed plan irrespective of changes in 
commodity prices (Runge, 1994), (Lonergan, 1994) and (Winsen, 1994).  
Runge suggests adjusting the discount rate, while Lonergan and Winsen 
prefer the adoption of real options pricing techniques. 

  Sorentino (2000) argues for the use of stochastic discounted cash flow 
analysis and Bayesian analysis to model the uncertainties inherent in 
valuation of early stage mining projects.  He argues against the use of risk 
adjusted discount rates that take into account project uncertainties on the 
basis that these uncertainties are evaluated explicitly in the valuation 
technique. 
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Problems arising from traditional approaches – the value of 
flexibility 
 

The primary shortfall of traditional NPV approaches is that they do not value 
management flexibility and organisational knowledge enhancement after the 
commitment of resources (Anderson, 2000).  Risk is due to uncertainties and 
environmental changes and is fundamental for the development of new strategic 
options.  Option pricing can be used to analyse these strategic decisions. 
 
A number of techniques are available for the valuation of strategic projects 
(Luehrman, 1997).  Different valuation methods are required for different problem 
types.  These he splits into operations (assets in place), opportunities (real options) 
and equity claims.  Valuation methodologies for operations include multiples of sales, 
book value, EBIT and cash flow as well as WACC-based DCF and Monte Carlo 
simulation.  He recommends an adjusted present value (APV) technique where each 
cash flow is discounted at the correct rate rather than trying to calculate a WACC that 
applies to an average cash flow.   
 
Valuation methodologies for opportunities include multiples for installed base and 
customer-subscriber, Bayesian decision trees, scenario analysis, Monte Carlo 
simulation, and option pricing.  Luehrman (1997) recommends simple option pricing 
to gain an insight into the value of the opportunity.  Park and Herath (2000) also 
argue that real options are more suited where the potential exists to delay investment 
since this technique emphasises the potential for creating value by resolving 
uncertainty. 
 
Valuation methodologies for equity claims include net income multiples, P/E ratios, 
WACC-based DCF (minus debt), scenario analysis and Monte Carlo simulation.  
Luehrman (1997) recommends the use of equity cash flow (ECF) as a comparison 
technique.  ECF evaluates the value of an equity claim on a bundle of assets and 
opportunities. 
 

REAL OPTIONS ANALYSIS 
 

Real options may be evaluated using: 

  Exact valuation formulas based on solutions to partial differential equations 
(Hull, 1993, p207ff). 

  Binomial analysis techniques based on discrete time approximations of the 
above equations. 

  Bayesian decision trees (Herath and Park, 2001). 

  Monte Carlo simulation (Hull, 1993, p329ff). 

  Combinations of the above techniques. 
 

Binomial analysis techniques 
 

Park and Herath (2000) note the restrictive assumptions involving asset price 
dynamics inherent in the Black and Scholes model.  They suggest that the use of the 
binomial model is more feasible because of the complexity of real life capital 
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budgeting, the potential for multiple variables and the absence of a risk free hedge 
such that arbitrage pricing may not hold. 
 
With the binomial analysis technique a binomial lattice of prices is first constructed 
(Hull, 1993, p335ff).  At time zero the price S is known.  For each successive period, 

t, the price may move up by a factor u or down by a factor d.  At time it the price 

may be expressed as, 

itojfordSu jij 0
 

where, 
teu  
 

u
ed t 1 

 

= price variance 

t  = time increment 

ti = time period 

 
Options are evaluated using dynamic programming, starting at the last time 
increment and working backwards through the tree to derive the option value.  The 
terminal node values in the last time increment i = N are given by, 

  NtojforXSf jNjN 00,max ,,   

for a call option and, 

  NtojforSXf jNjN 00,max ,,   

for a put option, 
where, 

X = the exercise price. 

 
For European options where no early exercise is possible, the node values for earlier 
time periods are, 

   1101 ,11,1,  

 Ntoianditojforfppfef jiji

tr

ji  

where, 

du

de
p

tr








is the risk neutral probability of an upward price movement. 

 
For an American option early exercise is possible and the nodal values are given by, 

    1101,max ,11,1,  

 NtoianditojforfppfeXdSuf jiji

trjij

ji

 
for a call option and, 

    1101,max ,11,1,  

 NtoianditojforfppfedSuXf jiji

trjij

ji

 
for a put option. 
 

 

Uses of real options analysis 
 

Trigeorgis (1993) describes the common types of real options as: 

  Option to defer an investment, waiting to see if prices justify development.  
Valued as a call option. 
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  Staged development that allows abandonment mid-stream if new information 
is unfavourable.  Valued as a compound option. 

  Option to alter output by expanding, contracting or temporary shutdown. 

  Option to abandon permanently and realise the resale value of capital assets. 

  Option to switch inputs, processes or outputs as prices and costs vary. 

  Growth options where an early investment is a prerequisite in a chain of 
interrelated projects, opening up future growth opportunities. 

  Multiple interacting options are typical of real life situations.  The combined 
option value differs from the sum of the individual options.  Real options also 
interact with financial options. 

 
Complex, interacting real-life options require numerical techniques such as Monte 
Carlo simulation, Bayesian decision trees or binomial lattices. 
 

PRICING ASSUMPTIONS IN REAL OPTIONS 
ANALYSIS 

 

The basis for the early work on real options is geometric Brownian motion.  The 
expected value for price at time “t” can be shown to be (Robel, 2001), 

  t

t eSSE 
0  

and the variance as, 

   1222

0  tt

t eeSSVar 
. 

This price model therefore describes exponential growth under uncertainty. 
 
Where a real option is dependant on a commodity price Robel (2001) and Laughton 
and Jacoby (1993) argue that the price may be subject to random shocks, but that in 
the long run, competitive pressures will ensure that it reverts to a long term 
sustainable level.  This situation describes most mining ventures where the investing 
company is a price-taker in the commodity market. 
 
The impact of price reversion is to reduce the uncertainty in long-term revenues.  
Laughton and Jacoby (1993) found that use of a single discounted rate to value 
projects with unequal lives and price reversion introduces a bias against long-term 
investments. 
 

Mean reversion of prices 
 

Calistrate (cit. Robel, 2001) suggested the following binomial approximation to the 
risk-neutralised mean-reverting process.  The price tree is calculated as described 
previously.  The probability of an up step at time i, after j up steps is calculated from, 









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
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and where, 

 

.1,1

;10,

;0,0









xif

xifx

xif

xP  

correlation coefficient between the market and commodity price Wiener 
processes. 

m

m r







  is the market cost of risk. 

 

A NEW VALUATION ALGORITHM FOR CASES WITH 
LIMITED RESOURCES 

 
The gold mining example provided in the paper to the Valmin conference in 1994 by 
Winsen has been re-worked to provide a valuation algorithm for two common mining 
problems.  The original example valued a gold mine that could mine from one of 
three areas in any year. Sufficient reserves existed in each area to ensure that a lack 
of reserves would not occur within the proposed mine life for any mining area.  I have 
extended this model to cover two alternate mining scenarios: 
 

1. Limited Mining Reserves.  In this case the mine life is extended from five 
years to eight years.  This ensures that the three mining areas will run out of 
reserves within the mine life.  Management options are to select the pits to be 
mined, whether to close the mine or to mothball for each time period. 

2. Cut-off Grade Problem.  In this case the three mining reserve quantities are 
assumed to represent the total reserves to three cut-off grades.  That is, 
management may choose between processing high, medium or low head 
grades.  Processing of a higher head grade results in some potential resource 
being sent to waste.  Management also has the choice of mothballing or 
abandonment in each time period. 

 
The original problem was solved by using a binomial technique for options valuation.  
This used dynamic programming to determine the maximum value for the mine. 
 

Limited mining reserves 

 
With limited mining reserves, the reserve available for mining is dependant on the 
amount mined in previous years.  The mine to be valued is shown diagrammatically 
in Figure 1 – Limited Mining Reserves Problem. Three mining areas, with different 
quantities of ore and waste, can be mined in any order.  Insufficient reserves exist to 
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mine from the one area for the full eight years.  Total reserves, however, are 
sufficient to last the full eight years. 
 
 
Figure 1 – Limited Mining Reserves Problem. 

High grade
pit

Medium grade
pit

Low grade
pit

Ore throughput     450,000 tpa
Waste ratios          5.9:1
Recovered grade 4.1250 g/t
Ore reserve          851,520.65 t

Ore throughput     503,000 tpa
Waste ratios          3.5:1
Recovered grade 3.6075 g/t
Ore reserve          1,305,665.00 t

Ore throughput     557,500 tpa
Waste ratios          2:1
Vecovered grade 3.2215 g/t
Ore reserve          1,958,497.50 t

Figure 1 - Limited Mining Reserves Problem

 
 
 
The algorithm used to solve the unlimited reserves case cannot be used to value the 
limited mining reserves case because of the following limitations: 

  Mining of differing reserve areas results in differing reserve quantities being 
available for mining in later years.  This path dependence results in the 
binomial tree becoming a binary tree for a generalised algorithm. 

  The selection of the optimum mix of mining from the high, medium and low 
grade pits at each node in the binomial (binary) tree is actually a linear 
programming problem.  This becomes important in conditions where available 
reserves become a limitation on mining. 

  The current dynamic programming formulation cannot be applied to the 
limited mining reserves case since the state of each stage in the current 
formulation does not optimise the decisions at the current stage without 
checking the feasibility of previous stages.  This is essential for a dynamic 
programming algorithm (Taha, 1976, p208ff). 
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This requires that a new algorithm be developed to determine the maximum value for 
this compound option.  A discussion of this algorithm and the shortfalls evident in the 
original algorithm for solving this new problem is given later in this paper. 
 

Cut-off grade problem 

 
Many practical mining problems relate to selecting the optimum grade for mining and 
processing.  All ore lower than the cut-off is removed as waste and not processed for 
contained mineral.  Any low grade material sent to waste is not available for 
processing at a later stage, due to its low incremental grade and due to burial in a 
waste dump.  The mine to be valued is shown diagrammatically in Figure 2 – Pit 
Cross Section Showing Cut off Grade Problem Three mining cut-off grades are 
available.  The grades and reserve tonnages indicated are an average for all ore at 
the respective cut-off grade (high, medium, or low).  Reserves will be exhausted 
within the five year lease period.  The mine life may last from 2.7 years for high grade 
mining, to 5 years for low grade.  The cut-off grade may be varied at any time during 
the mine life. 
 
Figure 2 – Pit Cross Section Showing Cut off Grade Problem  

Ore throughput     450,000 tpa
Waste ratios          5.9:1
Recovered grade 4.1250 g/t
Ore reserve          1,211,956.52 t

High grade
Ore throughput     503,000 tpa
Waste ratios          3.5:1
Recovered grade 3.5000 g/t
Ore reserve          1,858,333.33 t

Medium grade

Ore throughput     557,500 tpa
Waste ratios          2:1
Recovered grade 2.7500 g/t
Ore reserve          2,787,500.00 t

Low grade

Pit Wall
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Recovered grade 3.5000 g/t
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Medium grade

Ore throughput     557,500 tpa
Waste ratios          2:1
Recovered grade 2.7500 g/t
Ore reserve          2,787,500.00 t

Low grade

Pit Wall
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The solution to this problem is similar to the limited reserves problem and uses the 
same algorithm. 
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Calculation algorithm 

 
All calculations are described in detail in the Appendix.  As noted earlier, the base 
case algorithm has three major shortfalls when being applied to the limited reserves 
and cut-off grade problems. 

Path dependence 

Selection of the optimal reserve for mining at any decision node in the binomial tree 
results in reduced reserve quantities being available for mining in subsequent years.  
In the limited reserves case, only the reserve from the mined pit is reduced, but in the 
cut-off grade case the total reserve is reduced for all mining grades.  The amount by 
which the total reserve is reduced is dependant on the grade selected for mining at 
the decision node. 
 
Since earlier mining grade decisions will influence the future reserves available for 
mining and therefore future mining decisions, this introduces path dependence into 
the algorithm.  This path dependence results in the binomial tree becoming a binary 
tree for a generalised algorithm. 
 

Linear programming 

The second limitation of the original algorithm relates to the method of determining 
the optimum grade to be mined at each decision node.  The original algorithm 
assumes that the best solution is to mine only one ore type.  This will be correct with 
unlimited reserves.  As reserves become a constraint on production, the best solution 
may be to mine from two or more grades.  Thus the decision at any node may be 
expressed as a linear optimisation problem.  For the limited reserves case the linear 
optimisation problem may be expressed as, 
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R baj ,,
 is the remaining reserve of grade j in period a and for decision node b.  In this 

formulation the proportion of grade j mined in a period is given by c j
.   

 

For the cut-off ratio case mining to any cut-off ratio reduces the total remaining 
reserve.  This will change the linear optimisation problem to, 
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The linear optimisation formulation above only optimises the variable costs and 
revenues for the various mining grade options.  The recursive dynamic programming 
formulation still needs to take into account fixed costs, future values and the options 
of mothballing or abandoning the mine.  The formula is, 
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The mine valuation calculation contains a linear programming optimisation function 
(LINPROG(target,constraint,maximin)) to allow solution of the linear optimisation 
problems formulated above.  The function is written in VBA and has been adapted 
from a basic program developed by Stanford GSB (1974).  The program uses a 
modified simplex method as described by Taha (1976, pp 47-72).  Code for this 
function is shown in the Appendix. 
 

Dynamic programming 

 
Dynamic programming is described by Wagner (1969, p343) as an approach to 
optimisation consisting of the following structure: 

  Decision variables and constraints are grouped according to stages which are 
considered sequentially. 

  A state variable, the value being optimised, is carried forward from previous 
stages. 

  The current decision influences the outcome of the next stage. 

  Optimality of the current decision is based on its economic impact on the 
current and future stages. 

 
The calculations are therefore recursive.  In the base run algorithm the recursive 
calculations start at the final period and progress to the first period.  With the limited 
reserves and cut-off ratio cases the recalculation of reserves based on mining 
decisions provides a feedback loop.  The presence of a feedback loop contravenes 
the last condition of optimality.  Calculation of the optimum value for a stage is not 
final since the feedback loop can change the reserves available for mining in earlier 
stages, thereby allowing a change in the value from the previous “optimum”. 
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The revised calculation algorithm 

A new dynamic programming algorithm has been developed to calculate the 
maximum value for the new cases being studied.  This algorithm is shown graphically 
in Figure 3 – Revised Calculation Algorithm.  It consists of nested optimisation 
algorithms.  Linear programming is used at each decision node as described 
previously.  A backwards calculation is used to calculate value and a forwards 
calculation is used to give reserves available for mining.  This requires an iterative 
procedure that converges to a solution.  These three calculation processes are 
allowed to iterate until a stable solution is attained.  A final forwards calculation is 
used to test all possible solutions for the initial node and select the optimal solution 
for this node.  The whole procedure is applied recursively for each period in turn until 
an optimal solution is reached. 
 
The algorithm was programmed using VBA for use with an Excel spreadsheet.  A 
description of the spreadsheet is attached in the appendix. 
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Figure 3 – Revised Calculation Algorithm 
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The calculation algorithm consists of 
three types of decision node 
connected in a binary  tree.  The 
decision nodes are:

An initial node for which 
mineable reserves are defined 
and value is dependant on 
successive nodes;
A calculation node which 
depends on preceding nodes 
for available reserves and 
s u c c e e d i n g  n o d e s  fo r  

determining value; and,
A terminal node which depends 
on preceding nodes for 
available reserves, but for 
which an optimum value does 

not depend on any other nodes.

The reserves at each node are initially 
set equal to .  Linear programming 

is used at terminal nodes and an 
assumed solution at other nodes to 
select the mined quantities.  A 
backwards recursive calculation is 
used to calculate the initial value 

.( ).  Since the remaining 
reserves are impacted by the mining 
carried out at each node, the 
remaining reserves for mining are 
calculated using a recursive 
algorithm ( ).   and 
 are iterated until a stable solution is 

found.

R
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The selected mining reserve at the 
initial node is then made sub-optimal, 
thus forcing the selection of an 
alternate reserve.  The calculation 
again iterates between  and 

 until a stable  is reached.  

This process is repeated until all 
alternative period 1 mining reserves 
have been evaluated.  The reserve 
that gave the highest  is then 
selected as optimal for period 1.

The process is then repeated with the 
node at period 1 removed from the 
optimisation calculation.  The two 
period 2 nodes then become the initial 
nodes.   shows the value 
calculation and  shows the 
reserve cal culat i on for  t he 
optimisation of period 2 nodes.

The procedure is repeated for each 
period until the nodes for the second 
last period are optimised.  This is 
shown in  and .  A 
recursive calculation of value based 
on the optimal mining reserves for 
each period will then result in the 
maximum value for the mine, 
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Figure 3 - Revised
Calculation Algorithm
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THE VALUE OF MANAGEMENT FLEXIBILITY 
 

The real option value was determined for the limited mining reserves and cut-off 
grade problems outlined above.  The real options value for the limited reserves case 
is shown in Figure 4 – Real Option Value – Limited Mining Reserves Problem 
and the value for the cut-off grade case in Figure 5 – Real Option Value – Cut-off 
Grade Problem.  A range of gold prices was used to show the variation of 
management flexibility with commodity price.  
 
Figure 4 – Real Option Value – Limited Mining Reserves Problem 

Figure 4 - Real Option Value - Limited Mining Reserves Problem
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Figure 5 – Real Option Value – Cut-off Grade Problem 

Figure 5 - Real Option Value - Cut-off Grade Problem
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NPV (5yr) ($33.78) ($25.22) ($16.66) ($8.10) $0.46 $9.03 $17.59 $26.15 $34.71 $43.27 $51.83 

ROV (5yr) $1.75 $1.75 $1.75 $4.18 $8.36 $14.37 $21.64 $29.02 $36.51 $44.11 $51.94 

Flex Val $35.53 $26.97 $18.41 $12.28 $7.89 $5.34 $4.05 $2.87 $1.80 $0.84 $0.10 
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As price increases, the need for management flexibility to change grade, mothball or 
abandon reduces.  The real option value approaches the NPV and the value of 
management flexibility reduces.  That is, as the project gets further in the money the 
real option value approaches the NPV. 
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The examples highlighted in this paper use exponential price increases.  Use of the 
mean reverting prices outlined earlier in the paper is also possible and gives a wider 
applicability where commodity prices are not expected to increase exponentially. 
 
Use of a spreadsheet to calculate option value using this algorithm is somewhat 
cumbersome due to the large amount of time necessary to set up the problem.  This 
paper has demonstrated, however, that there is potential to use this algorithm to 
produce a practical valuation tool. 
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APPENDIX 
 

This appendix provides an overview of the spreadsheet used to calculate the algorithm 
described in this paper.  The spreadsheet used to evaluate the cut-off grade is 
presented here.  The differences between the two spreadsheets are only minor. 
 
The spreadsheet consists of three worksheets and two macros: 

 A parameters sheet used to define constants for the problem; 

 A binomial price tree; 

 A binary valuation tree; 

 A linear programming function; and, 

 A macro to control the algorithm. 
 
The parameters for both problems were similar.  These parameters are shown in Exhibit 
1.  The problem is similar to that described by Winsen, 1994.  While the parameters are 
held constant throughout the mine life, it is a simple matter to vary these parameters on 
an annual basis. 
 
The binomial price tree is shown in Exhibit 2.  This price tree and its associated 
probabilities gives an exponentially increasing price necessary for risk neutralized 
options valuation.  It is a simple matter to use a mean reverting price tree and 
probabilities as described in the text for other pricing scenarios. 
 
The binary valuation tree is shown in Exhibit 3.  Each node contains the linear 
programming problem, including remaining reserves, mining rates and the selected 
grade.  They also contain values for mothballing, closure (abandon) as well as the 
selection of the optimal course of action at each node.  Only four years of mine life are 
shown in the diagram. 
 
The case shown in Exhibit 3 is for a $500 gold price.  It demonstrates the optimal 
management decisions made at various nodes based on the price, past decisions and 
possible future decisions.  The initial decision is to mothball the operation until the price 
increases.  Further price falls may lead to closure in years 3 or 4.  Grades processed are 
a combination of medium and high grade depending on the remaining reserve, prices 
and costs in order to maximise the mine value. 
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EXHIBIT 1: GOLD MINE PARAMETERS Cut-off Grade Problem  

        

S =  $300 - 800  per oz. AUD       

         

ore throughput:    max. available max. life  

Q1 = 450,000  tonnes p.a.   1,211,956.52 tonnes 2.69 years 

Q2 = 503,000  tonnes p.a.   1,858,333.33 tonnes 3.69 years 

Q3 = 557,500  tonnes p.a.   2,787,500.00 tonnes 5.00 years 

         

density = 2 tonnes/cubic metre      

         

waste (stripping) ratios:        

5.9 :1        

3.5 :1        

2 :1        

         

material mined multiples: (1+waste ratio)/density      

         

lambda1 = 3.45 cubic metres/tonne      

lambda2 = 2.25 cubic metres/tonne      

lambda3 = 1.5 cubic metres/tonne      

         

recovered grades:        

4.1250  grammes/tonne       

3.5000  grammes/tonne       

2.7500  grammes/tonne       

         

x1 = 0.1326  oz/tonne (4.125/31.10347)     

x2 = 0.1125  oz/tonne       

x3 = 0.0884  oz/tonne       

         

variable costs:        

v1 = $6.00  per cm (mining cost)      

v2 = $26.00  per tonne (milling cost)      

         

fixed costs\factors:        

F1 = $7,500,000  p.a.  fixed costs      

F2 = $1,000,000  p.a. mothballing costs      

A = $1,750,000  salvage value      

K/ = $6,000,000  capital expansion cost      

F/ = $3,850,000  extra fixed costs       
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EXHIBIT 2: Price Tree

Year 1 Year 2 Year 3 Year 4 Year 5

745.91

gold 674.93

price 610.70 610.70

tree 552.59 552.59

$500 500.00 500.00

452.42 452.42

409.37 409.37

370.41

335.16  
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gold price 500.00 Mothball 8.357 Abandon 1.750 gold price 552.59 Mothball 8.349 Abandon 1.750 gold price 610.70 Mothball 5.877 Abandon 1.750 gold price 674.93 Mothball 0.643 Abandon 1.750

Proportions 0.000 0.000 1.000 5.713 8.106 Proportions 0.000 1.000 0.000 11.407 11.927 Proportions 1.000 0.000 0.000 14.793 11.662 Proportions 0.868 0.132 0.000 17.857 8.406

Maximise 9.44 9.01 5.71 Value 8.357 Maximise 11.96 11.41 7.73 Value 11.927 Maximise 14.79 14.09 10.01 Value 11.662 Maximise 17.97 17.11 12.56 Value 8.406

Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 1.21 Q1 0.45 0.33 0.24 LE 1.21 Q1 0.45 0.33 0.24 LE 0.88 Q1 0.45 0.33 0.24 LE 0.43

Q2 0.69 0.50 0.37 LE 1.86 Q2 0.69 0.50 0.37 LE 1.86 Q2 0.69 0.50 0.37 LE 1.36 Q2 0.69 0.50 0.37 LE 0.67

Q3 1.04 0.75 0.56 LE 2.79 Q3 1.04 0.75 0.56 LE 2.79 Q3 1.04 0.75 0.56 LE 2.03 Q3 1.04 0.75 0.56 LE 1.00

gold price 452.42 Mothball 2.752 Abandon 1.750 gold price 500.00 Mothball 3.685 Abandon 1.750 gold price 552.59 Mothball 0.643 Abandon 1.750

Proportions 1.000 0.000 0.000 5.999 2.543 Proportions 0.000 0.000 1.000 4.564 2.309 Proportions 0.868 0.132 0.000 10.623 3.343

Maximise 6.00 5.75 2.81 Value 2.752 Maximise 8.20 7.84 4.56 Value 3.685 Maximise 10.69 10.20 6.55 Value 3.343

Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 1.21 Q1 0.45 0.33 0.24 LE 0.88 Q1 0.45 0.33 0.24 LE 0.43

Q2 0.69 0.50 0.37 LE 1.86 Q2 0.69 0.50 0.37 LE 1.36 Q2 0.69 0.50 0.37 LE 0.67

Q3 1.04 0.75 0.56 LE 2.79 Q3 1.04 0.75 0.56 LE 2.03 Q3 1.04 0.75 0.56 LE 1.00

gold price 500.00 Mothball 3.685 Abandon 1.750 gold price 552.59 Mothball 3.126 Abandon 1.750

Proportions 0.000 1.000 0.000 7.844 4.606 Proportions 1.000 0.000 0.000 10.687 5.870

Maximise 8.20 7.84 4.56 Value 4.606 Maximise 10.69 10.20 6.55 Value 5.870

Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 1.21 Q1 0.45 0.33 0.24 LE 0.88

Q2 0.69 0.50 0.37 LE 1.86 Q2 0.69 0.50 0.37 LE 1.36

Q3 1.04 0.75 0.56 LE 2.79 Q3 1.04 0.75 0.56 LE 2.03

gold price 409.37 Mothball 0.643 Abandon 1.750 gold price 452.42 Mothball 0.643 Abandon 1.750

Proportions 1.000 0.000 0.000 2.808 -1.961 Proportions 1.000 0.000 0.000 4.724 -0.787

Maximise 2.81 2.73 0.11 Value 1.750 Maximise 4.72 4.55 1.62 Value 1.750

Year 1.00 1.00 1.00 LE 1.00 Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 1.21 Q1 0.45 0.33 0.24 LE 0.88

Q2 0.69 0.50 0.37 LE 1.86 Q2 0.69 0.50 0.37 LE 1.36

Q3 1.04 0.75 0.56 LE 2.79 Q3 1.04 0.75 0.56 LE 2.03

gold price 552.59 Mothball 3.126 Abandon 1.750

Proportions 1.000 0.000 0.000 10.687 5.870

Maximise 10.69 10.20 6.55 Value 5.870

Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 0.88

Q2 0.69 0.50 0.37 LE 1.36

Q3 1.04 0.75 0.56 LE 2.03

gold price 452.42 Mothball 0.643 Abandon 1.750

Proportions 1.000 0.000 0.000 4.724 -0.787

Maximise 4.72 4.55 1.62 Value 1.750

Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 0.88

Q2 0.69 0.50 0.37 LE 1.36

Q3 1.04 0.75 0.56 LE 2.03

gold price 452.42 Mothball 0.643 Abandon 1.750

Proportions 1.000 0.000 0.000 4.724 -0.787

Maximise 4.72 4.55 1.62 Value 1.750

Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 1.21

Q2 0.69 0.50 0.37 LE 1.86

Q3 1.04 0.75 0.56 LE 2.79

gold price 370.41 Mothball 0.643 Abandon 1.750

Proportions 0.000 0.000 0.000 0.000 -4.094

Maximise -0.16 -0.08 -2.41 Value 1.750

Year 1.00 1.00 1.00 LE 1.00

Q1 0.45 0.33 0.24 LE 1.21

Q2 0.69 0.50 0.37 LE 1.86

Q3 1.04 0.75 0.56 LE 2.79

gold  p rice 610 .70  M othball 0 .000  Abandon 1 .750

P roportions 0 .868  0 .132  0 .000  13 .398 5 .113

M axim ise 13 .48  12 .85  8 .79  Value 5 .113

Year 1 .00  1 .00  1 .00  L E 1.00  

Q1 0.45  0 .33  0 .24  L E 0.43  

Q2 0.69  0 .50  0 .37  L E 0.67  

Q3 1.04  0 .75  0 .56  L E 1.00  

Year 1 Year 2 Year 3 Year 4

Abandon
Mothball

Selected Grade

Objective function

Production
Constraints {
Grades mined

Linear programming problem

High
grade

Medium
grade

Low
grade

Reserves
at start
of year

gold price
at this node

mothball present value
at this node

abandonment
present value

linear program result

present value of future production
plus mining in this year

value of the maximum of
mine, mothball or abandon

Data presented at each node

Exhibit 3 - Binary Valuation Tree

 


